direct product, metabelian, soluble, monomial
Aliases: C2×C32⋊M4(2), (C6×C12).10C4, (C3×C6)⋊1M4(2), C62.14(C2×C4), C32⋊3(C2×M4(2)), C32⋊2C8⋊7C22, C3⋊Dic3.30C23, (C4×C3⋊S3).16C4, C4.12(C2×C32⋊C4), (C3×C12).19(C2×C4), (C2×C32⋊2C8)⋊7C2, (C2×C4).7(C32⋊C4), C2.4(C22×C32⋊C4), (C22×C3⋊S3).15C4, (C4×C3⋊S3).96C22, C3⋊Dic3.51(C2×C4), (C3×C6).25(C22×C4), C22.16(C2×C32⋊C4), (C2×C3⋊Dic3).173C22, (C2×C4×C3⋊S3).26C2, (C2×C3⋊S3).45(C2×C4), SmallGroup(288,930)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C32 — C3×C6 — C3⋊Dic3 — C32⋊2C8 — C2×C32⋊2C8 — C2×C32⋊M4(2) |
Generators and relations for C2×C32⋊M4(2)
G = < a,b,c,d,e | a2=b3=c3=d8=e2=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, dbd-1=bc-1, ebe=b-1, dcd-1=b-1c-1, ece=c-1, ede=d5 >
Subgroups: 576 in 122 conjugacy classes, 38 normal (14 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, S3, C6, C8, C2×C4, C2×C4, C23, C32, Dic3, C12, D6, C2×C6, C2×C8, M4(2), C22×C4, C3⋊S3, C3×C6, C3×C6, C4×S3, C2×Dic3, C2×C12, C22×S3, C2×M4(2), C3⋊Dic3, C3×C12, C2×C3⋊S3, C2×C3⋊S3, C62, S3×C2×C4, C32⋊2C8, C4×C3⋊S3, C2×C3⋊Dic3, C6×C12, C22×C3⋊S3, C32⋊M4(2), C2×C32⋊2C8, C2×C4×C3⋊S3, C2×C32⋊M4(2)
Quotients: C1, C2, C4, C22, C2×C4, C23, M4(2), C22×C4, C2×M4(2), C32⋊C4, C2×C32⋊C4, C32⋊M4(2), C22×C32⋊C4, C2×C32⋊M4(2)
(1 22)(2 23)(3 24)(4 17)(5 18)(6 19)(7 20)(8 21)(9 48)(10 41)(11 42)(12 43)(13 44)(14 45)(15 46)(16 47)(25 37)(26 38)(27 39)(28 40)(29 33)(30 34)(31 35)(32 36)
(1 46 40)(3 34 48)(5 42 36)(7 38 44)(9 24 30)(11 32 18)(13 20 26)(15 28 22)
(1 46 40)(2 47 33)(3 34 48)(4 35 41)(5 42 36)(6 43 37)(7 38 44)(8 39 45)(9 24 30)(10 17 31)(11 32 18)(12 25 19)(13 20 26)(14 21 27)(15 28 22)(16 29 23)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
(2 6)(4 8)(9 30)(10 27)(11 32)(12 29)(13 26)(14 31)(15 28)(16 25)(17 21)(19 23)(33 43)(34 48)(35 45)(36 42)(37 47)(38 44)(39 41)(40 46)
G:=sub<Sym(48)| (1,22)(2,23)(3,24)(4,17)(5,18)(6,19)(7,20)(8,21)(9,48)(10,41)(11,42)(12,43)(13,44)(14,45)(15,46)(16,47)(25,37)(26,38)(27,39)(28,40)(29,33)(30,34)(31,35)(32,36), (1,46,40)(3,34,48)(5,42,36)(7,38,44)(9,24,30)(11,32,18)(13,20,26)(15,28,22), (1,46,40)(2,47,33)(3,34,48)(4,35,41)(5,42,36)(6,43,37)(7,38,44)(8,39,45)(9,24,30)(10,17,31)(11,32,18)(12,25,19)(13,20,26)(14,21,27)(15,28,22)(16,29,23), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (2,6)(4,8)(9,30)(10,27)(11,32)(12,29)(13,26)(14,31)(15,28)(16,25)(17,21)(19,23)(33,43)(34,48)(35,45)(36,42)(37,47)(38,44)(39,41)(40,46)>;
G:=Group( (1,22)(2,23)(3,24)(4,17)(5,18)(6,19)(7,20)(8,21)(9,48)(10,41)(11,42)(12,43)(13,44)(14,45)(15,46)(16,47)(25,37)(26,38)(27,39)(28,40)(29,33)(30,34)(31,35)(32,36), (1,46,40)(3,34,48)(5,42,36)(7,38,44)(9,24,30)(11,32,18)(13,20,26)(15,28,22), (1,46,40)(2,47,33)(3,34,48)(4,35,41)(5,42,36)(6,43,37)(7,38,44)(8,39,45)(9,24,30)(10,17,31)(11,32,18)(12,25,19)(13,20,26)(14,21,27)(15,28,22)(16,29,23), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (2,6)(4,8)(9,30)(10,27)(11,32)(12,29)(13,26)(14,31)(15,28)(16,25)(17,21)(19,23)(33,43)(34,48)(35,45)(36,42)(37,47)(38,44)(39,41)(40,46) );
G=PermutationGroup([[(1,22),(2,23),(3,24),(4,17),(5,18),(6,19),(7,20),(8,21),(9,48),(10,41),(11,42),(12,43),(13,44),(14,45),(15,46),(16,47),(25,37),(26,38),(27,39),(28,40),(29,33),(30,34),(31,35),(32,36)], [(1,46,40),(3,34,48),(5,42,36),(7,38,44),(9,24,30),(11,32,18),(13,20,26),(15,28,22)], [(1,46,40),(2,47,33),(3,34,48),(4,35,41),(5,42,36),(6,43,37),(7,38,44),(8,39,45),(9,24,30),(10,17,31),(11,32,18),(12,25,19),(13,20,26),(14,21,27),(15,28,22),(16,29,23)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)], [(2,6),(4,8),(9,30),(10,27),(11,32),(12,29),(13,26),(14,31),(15,28),(16,25),(17,21),(19,23),(33,43),(34,48),(35,45),(36,42),(37,47),(38,44),(39,41),(40,46)]])
36 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 3A | 3B | 4A | 4B | 4C | 4D | 4E | 4F | 6A | ··· | 6F | 8A | ··· | 8H | 12A | ··· | 12H |
order | 1 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 6 | ··· | 6 | 8 | ··· | 8 | 12 | ··· | 12 |
size | 1 | 1 | 1 | 1 | 18 | 18 | 4 | 4 | 2 | 2 | 9 | 9 | 9 | 9 | 4 | ··· | 4 | 18 | ··· | 18 | 4 | ··· | 4 |
36 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | |||||
image | C1 | C2 | C2 | C2 | C4 | C4 | C4 | M4(2) | C32⋊C4 | C2×C32⋊C4 | C2×C32⋊C4 | C32⋊M4(2) |
kernel | C2×C32⋊M4(2) | C32⋊M4(2) | C2×C32⋊2C8 | C2×C4×C3⋊S3 | C4×C3⋊S3 | C6×C12 | C22×C3⋊S3 | C3×C6 | C2×C4 | C4 | C22 | C2 |
# reps | 1 | 4 | 2 | 1 | 4 | 2 | 2 | 4 | 2 | 4 | 2 | 8 |
Matrix representation of C2×C32⋊M4(2) ►in GL6(𝔽73)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 72 | 0 | 0 | 0 |
0 | 0 | 0 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 72 | 0 |
0 | 0 | 0 | 0 | 0 | 72 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 72 | 72 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 72 | 72 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 72 | 72 |
0 | 0 | 0 | 0 | 1 | 0 |
26 | 46 | 0 | 0 | 0 | 0 |
72 | 47 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 72 | 0 |
0 | 0 | 0 | 0 | 1 | 1 |
0 | 0 | 72 | 0 | 0 | 0 |
0 | 0 | 0 | 72 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
56 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 72 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 72 | 72 |
G:=sub<GL(6,GF(73))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,72],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,72,1,0,0,0,0,72,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,72,1,0,0,0,0,72,0,0,0,0,0,0,0,72,1,0,0,0,0,72,0],[26,72,0,0,0,0,46,47,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,72,1,0,0,0,0,0,1,0,0],[1,56,0,0,0,0,0,72,0,0,0,0,0,0,1,72,0,0,0,0,0,72,0,0,0,0,0,0,1,72,0,0,0,0,0,72] >;
C2×C32⋊M4(2) in GAP, Magma, Sage, TeX
C_2\times C_3^2\rtimes M_4(2)
% in TeX
G:=Group("C2xC3^2:M4(2)");
// GroupNames label
G:=SmallGroup(288,930);
// by ID
G=gap.SmallGroup(288,930);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-3,3,56,422,100,80,9413,362,12550,1203]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^3=c^3=d^8=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,d*b*d^-1=b*c^-1,e*b*e=b^-1,d*c*d^-1=b^-1*c^-1,e*c*e=c^-1,e*d*e=d^5>;
// generators/relations